Low Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation
نویسندگان
چکیده
منابع مشابه
Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation
We study Dickson bases for binary field representation. Such representation seems interesting when no optimal normal basis exists for the field. We express the product of two elements as Toeplitz or Hankel matrix vector product. This provides a parallel multiplier which is subquadratic in space and logarithmic in time.
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملFactoring Dickson polynomials over finite fields
We derive the factorizations of the Dickson polynomials Dn(X, a) and En(X, a), and of the bivariate Dickson polynomials Dn(X, a) − Dn(Y, a), over any finite field. Our proofs are significantly shorter and more elementary than those previously known.
متن کاملMultiplication over Arbitrary Fields
We prove a lower bound of 52n2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Computers
سال: 2011
ISSN: 0018-9340
DOI: 10.1109/tc.2010.132